Acoustic Vibration Behavior of Full Size Steam Generator and Tubular Heat Exchanger In-Line Tube Banks: A Brief Note

Author:

Eisinger Frantisek L.12,Sullivan Robert E.32

Affiliation:

1. Fellow ASME

2. Foster Wheeler North American Inc., Perryville Corporate Park, Clinton, NJ 08809

3. Mem. ASME

Abstract

Based on recent laboratory experimental data by Feenstra et al. (2004, “The Effects of Duct Width and Baffles on Acoustic Resonance in a Staggered Tube Array,” in Proceedings of the Eighth International Conference on Flow-Induced Vibration FIV 2004, E. de Langre and F. Axisa, eds., Paris France, Jul. 6–9, pp. 459–464; 2006, “A Study of Acoustic Resonance in a Staggered Tube Array,” ASME J. Pressure Vessel Technol., 128, pp. 533–540), it has been determined that for larger test section widths, the maximum acoustic pressures generated during acoustic resonance were greater by more than a factor of 4 than those predicted by Blevins and Bressler (1993, “Experiments on Acoustic Resonance in Heat Exchanger Tube Bundles,” J. Sound Vib., 164, 503–533). We have evaluated a great number of resonant and nonresonant cases from in-service experience of full size steam generator and tubular heat exchanger tube banks in order to see the general vibratory behavior of the full size units. Fifteen vibrating and twenty-seven nonvibrating cases were evaluated and compared to the Feenstra et al. relationship. It is shown that on average the results from the full size units correlate well with the relationship of Feenstra et al. A gap exists between the vibratory and the nonvibratory cases. The nonvibratory cases produce acoustic pressures, which are at or below the Blevins and Bressler relationship. From the results, it can be concluded that the full size units, regardless of their size and also acoustic mode, produce high acoustic pressures at resonance, with the maximum acoustic pressure on average more than 50–75 times higher than the input energy parameter defined by the product of Mach number and pressure drop through the tube bank. The results are tabulated and plotted for comparison.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference5 articles.

1. The Effects of Duct Width and Baffles on Acoustic Resonance in a Staggered Tube Array;Feenstra

2. A Study of Acoustic Resonance in a Staggered Tube Array;Feenstra;ASME J. Pressure Vessel Technol.

3. Experiments on Acoustic Resonance in Heat Exchanger Tube Bundles;Blevins;J. Sound Vib.

4. On Acoustical Resonance in Tube Arrays. Part I, Experiments, Part II Damping Criteria;Ziada;J. Fluids Struct.

5. A Preliminary Study of Flow and Acoustic Phenomena in Tube Banks;Fitzpatrick;ASME J. Fluids Eng.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3