Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 1: Mean Flow and Turbulence Statistics

Author:

Volino Ralph J.1

Affiliation:

1. Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD 21402

Abstract

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.

Publisher

ASME International

Subject

Mechanical Engineering

Reference41 articles.

1. Hourmouziadis, J., 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series, 167.

2. Mayle, R. E. , 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509–537.

3. Sharma, O. P., Ni, R. H., and Tanrikut, S., 1994, “Unsteady Flow in Turbines,” AGARD Lecture Series 195, Paper No. 5.

4. Hodson, H. P., 1991, “Aspects of Unsteady Blade-Surface Boundary Layers and Transition in Axial Turbomachines,” Boundary Layers in Turbomachines, VKI Lecture Series 1991–2006.

5. Wisler, D. C., 1998, “The Technical and Economic Relevance of Understanding Boundary Layer Transition in Gas Turbine Engines,” Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, J. E. LaGraff and D. E. Ashpis, eds., NASA/CP-1998-206958, pp. 53–64.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3