Evaluation of Turbulent Spot Production Rate in Boundary Layers Under Variable Pressure Gradients for Gas Turbine Applications

Author:

Dellacasagrande M.1,Lengani D.1,Simoni D.1,Ubaldi M.1,Zunino P.1

Affiliation:

1. DIME, Universitá di Genova, Genova, I-16145, Italy

Abstract

Abstract The paper presents several results from an experimental data base on transitional boundary layers developing on a flat plate installed within a variable area opening endwall channel. Measurements have been carried out by means of time-resolved particle image velocimetry (PIV). The overall test matrix spans three Reynolds numbers, four freestream turbulence intensity levels, and four different flow pressure gradients. For each condition, 16,000 instantaneous flow fields have been acquired in order to obtain high statistical accuracy. The flow parameters have been varied in order to provide a gradual shift of the mode of transition from a by-pass process to separated flow transition. In order to quantify the influence of the flow parameter variation on the boundary layer transition process, the transition onset and end positions, and the turbulent spot production rate have been evaluated with a wavelet-based intermittency detection technique for every condition exhibiting a complete transition process. The by-pass transition mode has the longest transition length that decreases with increasing the Reynolds number. The transition length of the separated flow case is smaller than the by-pass one, and the variation of the flow parameters has a similar impact. The variation of the inlet turbulence intensity has a small influence on this parameter except for the condition at the highest turbulence intensity that always shows the lowest turbulent spot production rate because a by-pass type transition occurs. This large amount of data has been used to develop new correlations used to predict the spot production rate and the transition length in attached and separated flows.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3