Affiliation:
1. Universal Ensco, Inc., 1811 Bering Drive, Houston, TX 77057
2. DIEM—University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
Abstract
In the present paper, a comprehensive methodology for the thermoeconomic performance optimization of an intercooled reheat (ICRH) gas turbine with recuperation for cogenerative applications has been presented covering a wide range of power-to-heat ratio values achievable. To show relative changes in the thermoeconomic performance for the recuperated ICRH gas turbine cycle, results for ICRH, recuperated Brayton and simple Brayton cycles are also included in the paper. For the three load cases investigated, the recuperated ICRH gas turbine cycle provides the highest values of electric efficiency and Energy Saving Index for the cogenerative systems requiring low thermal loads (high power-to-heat ratio) compared to the other cycles. Also, this study showed, in general, that the recuperated ICRH cycle permits wider power-to-heat ratio range compared to the other cycles and for different load cases examined, a beneficial thermodynamic characteristic for the cogeneration applications. Furthermore, this study clearly shows that implementation of the recuperated ICRH cycle in a cogeneration system will permit to design a gas turbine which has the high specific work capacity and high electric efficiency at low value of the overall cycle pressure ratio compared to the other cycles studied. Economic performance of the investigated gas turbine cycles have been found dependent on the power-to-heat ratio value and the selected cost structure (fuel cost, electric sale price, steam sale price, etc.), the results for a selected cost structure in the study are discussed in this paper.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献