The Combined Reheat Gas Turbine/Steam Turbine Cycle: Part I—A Critical Analysis of the Combined Reheat Gas Turbine/Steam Turbine Cycle

Author:

Rice I. G.1

Affiliation:

1. P.O. Box 233, Spring, Texas

Abstract

The reheat gas turbine cycle combined with the steam turbine Rankine cycle holds new promise of appreciably increasing power plant thermal efficiency. Apparently the cycle has been overlooked and thus neglected through the years. Research and development is being directed towards other gas turbine areas because of the world energy crunch; and in order to focus needed technical attention to the reheat cycle, this paper is presented, using logic and practical background of heat recovery boilers, steam turbines, gas turbines and the process industry. A critical analysis is presented establishing parameters of efficiency, cycle pressure ratio, firing temperature and output. Using the data developed, an analysis of an actual gas generator, the second generation LM5000, is applied with unique approaches to show that an overall 50 percent efficiency power plant can be developed using today’s known techniques and established base-load firing temperatures.

Publisher

ASME International

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Gas Turbine Cooling for the Carbon-Neutral Era;International Journal of Turbomachinery, Propulsion and Power;2023-06-24

2. Exergy Analysis of Captive Power Plant;International Journal of Scientific Research in Science, Engineering and Technology;2019-05-10

3. Thermal modelling and optimisation of total useful energy rate of Joule–Brayton reheat cogeneration cycle;International Journal of Sustainable Energy;2014-01-02

4. Gas Turbine Configuration for Improving the performance of Combined Cycle Power Plant;Procedia Engineering;2011

5. Thermodynamic modelling and simulation of advanced combined cycle for performance enhancement;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2008-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3