Multiphysics Numerical Investigation of an Aeronautical Lean Burn Combustor

Author:

Bertini D.1,Mazzei L.1,Andreini A.1,Facchini B.1

Affiliation:

1. University of Florence, Florence, Italy

Abstract

Abstract The importance of the combustion chamber has been underestimated for years by aeroengine manufacturers that focused their research efforts mainly on other components, such as compressor and turbine, to improve the engine performance. Nevertheless, stricter requirements on pollutant emissions have contributed to increase the interest on combustor development and, nowadays, new design concepts are widely investigated. To meet the goals of ACARE FlightPath 2050 and future ICAO-CAEP standards one of the most promising results is provided by the Lean Burn technology. As this combustion mode is based on a lean Primary Zone, the air devoted to liner cooling is restricted and advanced cooling systems must be exploited to obtain higher overall effectiveness. The pushing trends of Turbine Inlet Temperature and Overall Pressure Ratio in modern aeroengine are not supported enough by the development of materials, thus making the research branch of liner cooling increasingly relevant. In this context, Computational Fluid Dynamics is able to predict the flow field and the complex interactions between the involved phenomena, supporting the design of modern Lean Burn combustors in all stages of the process. RANS approaches provide a solution of the problem with low computational cost, but can lack in accuracy when the flow unsteadiness dominates the fluid dynamics and the strong interactions, as in aeroengine combustors. Even if steady simulations can be easily employed in the preliminary design, their inaccuracy can be detrimental for an optimized combustor design and Scale-Resolving methods should be preferred, at least, in the final stages. Unfortunately, having to deal with a multiphysics problem as Conjugate Heat Transfer (CHT) in presence of radiation, these simulations can become computationally expensive and some numerical treatments are required to handle the wide range of time and space scales in an unsteady framework. In the present work the metal temperature distribution is investigated from a numerical perspective on a full annular aeronautical lean burn combustor operated at real conditions. For this purpose, the U-THERM3D multiphysics tool was developed in ANSYS Fluent and applied on the test case. The results are compared against RANS and experimental data to assess the tool capability to handle the CHT problem in the context of scale-resolving simulations.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3