Assessment of a Conjugate Heat Transfer Method on an Effusion Cooled Combustor Operated With a Swirl Stabilized Partially Premixed Flame

Author:

Amerini A.1,Paccati S.1,Mazzei L.1,Andreini A.1

Affiliation:

1. University of Florence DIEF—Department of Industrial Engineering, , Via Santa Marta 3, Florence 50139 , Italy

Abstract

AbstractComputational fluid dynamics (CFD) plays a crucial role in the design of cooling systems in gas turbine combustors due to the difficulties and costs related to experimental measurements performed in pressurized reactive environments. Despite the massive advances in computational resources in the last years, reactive unsteady and multi-scale simulations of combustor real operating conditions are still computationally expensive. Modern combustors often employ cooling schemes based on effusion technique, which provides uniform protection of the liner from hot gases, combining the heat removal by means of heat sink effect with liner coverage and protection by film cooling. However, a large number of effusion holes results in a relevant increase of computational resources required to perform a CFD simulation capable of correctly predicting the thermal load on the metal walls within the combustor. Moreover, a multi-physics and multi-scale approach is mandatory to properly consider the different characteristic scales of the several heat transfer modes within combustion chambers to achieve a reliable prediction of aerothermal fields within the combustor and wall heat fluxes and temperatures. From this point of view, loosely coupled approaches permit a strong reduction of the calculation time, since each physics is solved through a dedicated solver optimized according to the considered heat transfer mechanism. The object of this work is to highlight the capabilities of a loosely coupled unsteady multi-physics tool (U-THERM3D) developed at the University of Florence within ansys fluent. The coupling strategy will be employed for the numerical analysis of the TECFLAM effusion cooled swirl burner, an academic test rig well representative of the working conditions of a partially premixed combustion chamber equipped with an effusion cooling system, developed by the collaboration of the Universities of Darmstadt, Heidelberg, Karlsruhe, and the DLR. The highly detailed numerical results obtained from the unsteady multi-physics and multi-scale simulation will be compared with experimental data to validate the numerical procedure.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3