Experimental and Numerical Investigation on an Additively Manufactured Gas Turbine Ring Segment With an In-Wall Cooling Scheme

Author:

Wimmer Thomas1,Ruehmer Tobias1,Mick York1,Wang Lieke2,Weigand Bernhard3

Affiliation:

1. Siemens AG, Berlin, Germany

2. Siemens Energy Inc., Orlando, FL

3. University of Stuttgart, Stuttgart, Germany

Abstract

Abstract An additively manufactured ring segment (AMRS) for the first row of a large gas turbine from Siemens was designed with a novel cooling scheme. The wavy rectangular channels used for in-wall cooling are only viable through Additive Manufacturing (AM). Manufacturing deviations have been tracked using an optical 3D measuring system and were accounted for in the calculation models for thermal analysis. Friction factors of the cooling channels have been investigated experimentally allowing accurate flow prediction. The AMRS was tested in an engine at “Full Speed – Full Load” operating condition. It was instrumented with thermocouples and pressure taps. All crucial engine operating conditions were monitored. The results are compared to a conventional ring segment with similar instrumentation. It was installed next to the AMRS in the wake of the same burner. From a thermal model of the conventional ring segment and the measured temperatures the external boundary conditions are scaled to fit the experimental data. These were applied to the thermal model of the AMRS which was used for performance evaluation of the cooling scheme. This work addresses and quantifies the application of AM on advanced gas turbine cooling schemes. The AMRS underwent a mechanical integrity investigation in a referenced publication.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impacts of Superalloys on the Surface Quality of Additively Manufactured Channels;Journal of Turbomachinery;2024-03-11

2. Advanced Gas Turbine Cooling for the Carbon-Neutral Era;International Journal of Turbomachinery, Propulsion and Power;2023-06-24

3. Amplitude and Wavelength Effects for Wavy Channels;Journal of Turbomachinery;2022-10-20

4. Review of advances in convective heat transfer developed through additive manufacturing;Advances in Heat Transfer;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3