Amplitude and Wavelength Effects for Wavy Channels

Author:

Corbett Thomas M.1,Thole Karen A.1,Bollapragada Sudhakar2

Affiliation:

1. Pennsylvania State University Department of Mechanical Engineering, , State College, PA 16801

2. Solar Turbines Incorporated , San Diego, CA 92101

Abstract

Abstract To improve the efficiency and durability of gas turbine components, advancements are needed in cooling technologies. To accomplish this task, some manufacturers are turning to additive manufacturing (AM), as it offers the ability to both rapidly iterate on component design as well as incorporate unique internal cooling structures directly into parts. As one example, wavy microchannels can be readily integrated into turbine components. This study investigates wavy channels of varying channel amplitude and wavelength through experimental measurements of heat transfer and pressure loss. In addition to experimental testing, computational fluid dynamics (CFD) predictions were made to identify internal flow features that impacted performance. Five channel geometries were integrated into test coupons that were additively manufactured out of Hastelloy-X using direct metal laser sintering. True coupon geometric characteristics and wall roughness values were captured non-destructively using computed tomography (CT) scans. Geometric analyses indicated that coupons were reproduced accurately with minimal deviation from design intent. Experimental results indicated that decreasing the channel wavelength and increasing the channel amplitude resulted in substantial increases in both bulk friction factor and Nusselt number with respect to the nominal case and were scaled using a relative waviness parameter. CFD simulations predicted significant mixing of flow in the cases with the smallest wavelength and greatest amplitude.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3