Dynamics of Large Scale Mechanical Models Using Multilevel Substructuring

Author:

Papalukopoulos C.1,Natsiavas S.1

Affiliation:

1. Department of Mechanical Engineering, Aristotle University, 54 124 Thessaloniki, Greece

Abstract

An appropriate substructuring methodology is applied in order to study the dynamic response of very large scale mechanical systems. The emphasis is put on enabling a systematic study of dynamical systems with nonlinear characteristics, but the method is equally applicable to systems possessing linear properties. The accuracy and effectiveness of the methodology are illustrated by numerical results obtained for example vehicle models, having a total number of degrees of freedom lying in the order of a million or even bigger. First, the equations of motion of each component are set up by applying the finite element method. The order of the resulting models is so high that the classical substructuring methodologies become numerically ineffective or practically impossible to apply. However, the method developed overcomes these difficulties by imposing a further, multilevel substructuring of each component, based on the sparsity pattern of the stiffness matrix. In this way, the number of the equations of motion of the complete system is substantially reduced. Consequently, the numerical results presented demonstrate that besides the direct computational savings, this reduction in the dimensions enables the application of numerical codes, which capture response characteristics of dynamical systems sufficiently accurate up to a prespecified level of forcing frequencies. The study concludes by investigating biodynamic response of passenger-seat subsystem models coupled with complex mechanical models of ground vehicles resulting from deterministic or random road excitation.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference25 articles.

1. Applied Nonlinear Dynamics

2. Long Term Structural Dynamics of Mechanical Systems with Local Nonlinearities;Fey;ASME J. Vibr. Acoust.

3. Coupled Lateral-Torsional Vibration of a Gear-Pair System Supported by a Squeeze Film Damper;Chen;ASME J. Vibr. Acoust.

4. Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis;Verros;ASME J. Vibr. Acoust.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3