On the Predicted Performance of Oil Lubricated Thrust Collars in Integrally Geared Compressors

Author:

San Andrés Luis1,Cable Travis A.2,Wygant Karl3,Morton Andron3

Affiliation:

1. Mast-Childs Chair Professor Fellow ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

3. Samsung Techwin, 11757 Katy Fwy #110, Houston, TX 77079

Abstract

Integrally geared compressors (IGCs) comprise single stage impellers installed on the ends of pinion shafts, all driven by a main bull gear (BG) and shaft system. When compared to single shaft multistage centrifugal compressors, the benefits of IGCs include better thermal efficiency, reduced footprint and simple foundation, dispensing with a high speed coupling, as well as better access for maintenance and overhauls. In IGCs, the compression of the process gas induces axial loads on the pinion shafts that are transmitted via thrust collars (TCs) to the main drive shaft and balanced by a single thrust bearing. The TCs, located on either side of pinion gears, slightly overlap with the BG outer diameter to form lentil-shaped lubricant-wetted regions. Archival literature on the design and optimization of TCs is scant, in spite of their widespread usage as they are comprised of simple geometry mechanical elements. This paper presents an analysis of the hydrodynamic film pressure generated in a lubricated TC due to the rotation of both TC and BGs and specified taper angles for both bodies. The model solves the Reynolds equation of hydrodynamic lubrication to predict the operating film thickness that generates a pressure field reacting to impellers' thrust loads, these forces being a function of the pinion speed and the process gas physical properties. The model also predicts performance parameters, such as power loss and axial stiffness, and damping force coefficients. A parametric study brings out the taper angles in the TC and BG that balance the transmitted load with a lesser friction factor and peak pressure, along with large axial stiffness and damping.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference12 articles.

1. Helical Gear Transmissions With Thrust Collars;Russ. Eng. J. USSR,1968

2. Fingerhut, U., Rothstein, E., and Sterz, G., 1991, “Standardized Integrally Geared Turbomachines—Tailor Made for the Process Industry,” 20th Turbomachinery Symposium, Houston, TX, Sept. 17–19, pp. 131–145.

3. Pressure Ridge—An Old Machine Element With a New Potential Application;Konstruktion,2006

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3