Novel Approach for Optical Characterization of Thrust Collar Lubricated Area: Experimental and Numerical Results

Author:

Kerr Thomas1,Delgado Adolfo1

Affiliation:

1. Texas A&M Turbomachinery Lab, College Station, TX 77840

Abstract

Abstract Thrust collars (TCs) are bearing elements used in geared machinery that transmit axial loads from one shaft to another. TCs are primarily used in integrally geared compressors (IGCs) but are also found in gearboxes and marine propulsion applications. TCs are hydrodynamic elements featuring a converging-diverging wedge to generate a pressure field that reacts axial loads. Accurate modeling requires knowledge of the film characteristics such as cavitation, turbulence, and air ingestion, all of which reduce load capacity. Current models in the literature do not include mass-conserving cavitation algorithms or turbulence flow. The following paper introduces a new test rig that optically characterizes the thin film region of a TC. The test rig geometries, speeds, and loads match those typically seen in IGC applications. The test rig utilizes a transparent acrylic window in conjunction with a high-speed camera (HSC) to obtain high-speed images of the oil film. Images are filtered and averaged to obtain areas of interest in the oil film. Cavitation and turbulence areas are measured for pinion speeds of 2.5, 5, and 7.5 krpm and axial loads of 0.5, 1, and 1.5 kN. Cavitation occurs in the diverging (upper) region of the TC and appears at pinion speeds over 5000 rpm but does not change in shape after that speed. The cavitation is independent of applied load. Turbulence at the inlet region (bottom) occurs at all speeds but increases to almost 35% of the total area at the highest speed. This paper also presents a finite element (FE) model that includes predictions for the static characteristics of the TC, specifically the cavitation area. The cavitation modeling uses an iterative Elord's method, which conserves mass. The model predicts a similar cavitation area for all speeds and loads. A computational fluid dynamics (CFD) study predicts a similar cavitation area and pressure field to the FE model. The CFD model predicts turbulence in the lower region that increases for increasing spin speed, which matches the experimental results. The CFD model tends to under-predict the turbulence area compared to the experiments. As IGCs move into new application areas to satisfy new needs, the increase in efficiency and capacity comes at a cost of more load and higher speed requirements on the TCs. This work will help original equipment manufacturers model TCs more accurately to ensure safe and efficient operation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference25 articles.

1. Application and Design of Integrally Geared Compressors,2016

2. Integrally Geared API 617 Process Gas Compressors,2000

3. Thrust Cone Bearings Provide Increased Efficiency for Helical Gear Units at Moderate Speed Levels: Indications for Possible Energy Saving Potential in an Expanded Field of Application;Forsch. Ingenieurwes.,2017

4. Niederhauser, J., 1925, “ Apparatus for Balancing the Axial Thrust in Single Helical Toothed Wheel Gearing,” U.S. Patent No. 1,548,545.https://patents.google.com/patent/US1548545A/en

5. Helical Gear Transmissions With Thrust Collars;Russ. Eng. J.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3