A Novel Approach for the Inspection of Flexible Parts Without the Use of Special Fixtures

Author:

Abenhaim Gad N.1,Tahan Antoine S.2,Desrochers Alain1,Maranzana Roland2

Affiliation:

1. Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada

2. Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada

Abstract

In a free state, flexible parts may have different shapes compared to their computer-aided design (CAD) model. Such parts may likewise undergo large deformations depending on their space orientation. These conditions severely restrict the feasibility of inspecting flexible parts without restricting the deformations of the part and therefore require dedicated and expensive tools such as a conformation jig or a fixture to maintain the integrity of the part. To address these challenges, this paper proposes a new inspection method, the iterative displacement inspection (IDI) algorithm, that evaluates profile variations without the need for specialized fixtures. This study examines 32 models of simulated manufactured parts to show that the IDI algorithm can iteratively deform the meshed CAD model until it resembles the scanned manufactured part, which enables their comparison. The method deforms the mesh in such a manner so as to ensure its smoothness. This way, neither surface defects nor the measurement noise of the scanned parts are concealed during the matching process. As a result, the case studies illustrate that the method’s error essentially only represents the scanned part’s measurement noise. The inspection results, therefore, solely reflect the effect of variations from the manufacturing process itself and not the deformation of the part.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3