An Efficient Improved Harris Hawks Optimizer and Its Application to Form Deviation-Zone Evaluation

Author:

Liu Guangshuai1,Li Zuoxin1,Sun Si2,Yang Yuzou1,Li Xurui1,Yi Wenyu3

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

3. Sichuan Research & Design Institute of Agricultural Machinery, Chengdu 610066, China

Abstract

Evaluation of the deviation zone based on discrete measured points is crucial for quality control in manufacturing and metrology. However, deviation-zone evaluation is a highly nonlinear problem that is difficult to solve using traditional numerical optimization methods. Swarm intelligence has many advantages in solving this problem: it produces gradient-free, high-quality solutions and is characterized by its ease of implementation. Therefore, this study applies an improved Harris hawks algorithm (HHO) to tackle the problem. The average fitness is applied to replace the random operator in the exploration phase to solve the problem of conflicting exploration strategies due to randomness. In addition, the salp swarm algorithm (SSA) with a nonlinear inertia weight is embedded into the HHO, such that the superior explorative ability of SSA can fill the gap in the exploration of HHO. Finally, the optimal solution is greedily selected between SSA-based individuals and HHO-based individuals. The effectiveness of the proposed improved HHO optimizer is checked through a comparison with other swarm intelligence methods in typical benchmark problems. Moreover, the experimental results of form deviation-zone evaluation on primitive geometries show that the improved method can accurately solve various form deviations, providing an effective general solution for primitive geometries in the manufacturing and metrology fields.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Sichuan Province Information Application Support Software Engineering Technology Research Center Open Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3