Aerodynamic Effects in a Transonic Compressor With Nonaxisymmetric Tip Clearance

Author:

Jüngst Maximilian1,Liedtke Samuel1,Schiffer Heinz Peter1,Becker Bernd2

Affiliation:

1. Technische Universität Darmstadt, Darmstadt, Germany

2. Rolls-Royce Deutschland Ltd. & Co KG, Blankenfelde-Mahlow, Germany

Abstract

Future axial compressor designs tend to be built with larger relative tip gaps and eccentricity, since the core engines are reduced in size. Our knowledge of the aerodynamic effects due to eccentric tip gaps is largely based on low-speed work. The aim of this study is to widen current knowledge by using the 1.5 stage Darmstadt Transonic Compressor, which is representative of the front stage of a high pressure compressor. Efficiency, peak pressure rise and stability margin of the compressor are reduced linearly at design speed when the tip clearance is increased from 0.9% to 2.5% tip chord length. This holds true for configurations with eccentric rotor tip gap, if their circumferentially averaged gaps are considered. For a compressor with 96% eccentricity and 1.7% average tip clearance, corrected mass flow at rotor exit varies locally with up to ±20% and ±10% at stator exit, which can result in inlet distortions for subsequent stages in a multi-stage configuration. Also, the redistribution of flow massively influences stall inception during throttling at constant speed. Propagating disturbances are damped in sectors with higher inlet mass flow and lower incidence. Thus, overall operation remains stable, even though some sectors are highly disturbed. Consequently, the maximum clearance of an eccentric stage is not limiting the stable operation of the whole stage.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3