Effect of circumferential non-uniform tip clearance on the dynamic stall process of a single-stage axial compressor with total pressure distortion

Author:

Xu Haoyang1ORCID,Hu Jun12

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, China

Abstract

In this paper, the single-stage compressor with circumferential non-uniform tip clearance is experimentally investigated under 180° total pressure distortion for the compressor characteristics and the dynamic stall process. In the special structure of the circumferential non-uniform tip clearance, different circumferential distortion areas are adopted to actively induce the stall. The maximum or minimum flow coefficient near the stall point occurs when the location where the rotor departs the distortion area is at the average tip clearance rather than the maximum or minimum tip clearance. Based on the time-frequency analysis regarding the dynamic stall process at different correspondences between the inlet distortion and the tip clearance, it is found that the rotating frequency of the stall cell that is independent of the location of the distortion area is slightly less than 50% rotor rotating frequency and the large-scale stall inception whose frequency is 4–8 times the rotor rotating frequency occurs. Besides the circumferential phase difference from 90° to 180° between the location where the disturbance occurs and the location where the rotor departs, the distortion area exists. According to the dynamic stall process, the stall interpretation model of circumferential total pressure distortion under the circumferential non-uniform tip clearance is established.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3