Affiliation:
1. York University, Toronto, ON, Canada
Abstract
Selective Laser Melting (SLM) process is a Powder Bed Fusion (PBF) technique, which has shown significantly growth in the recent years. The demand for this process is justified by the versatility and ease in manufacturing the parts from 3D models as well for the increased complexity of engineered parts generated from topology or shape optimization. Automotive, aerospace, medical and aviation industries are taking great advantage of this process due the unique geometry characteristics found in the components. To enhance the benefits of SLM, a vital task is to analyze the laser power input impact on the temperature distribution through the powder bed, important for posterior residual stresses analysis. The Finite Element Method proposed in this study is a transient thermal model, able to predict temperature distribution through different sections of the powder bed when performing a single track of the laser scanning. Furthermore, the impact of the laser power input is carried out utilizing SS 304L, a low cost Stainless Steel alloy that can be employed in the SLM process, in order to determine the influence on the temperature distribution along the different cross sections.
Publisher
American Society of Mechanical Engineers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献