Abstract
A low-cost parametric finite element thermal model is proposed to study the impact of the initial powder condition, such as diameter and packing density, on effective thermal conductivity as well as the impact of the laser power input on the final temperature distributions during selective laser melting (SLM). Stainless steel 304L is the material used, since it is not yet commercially available in SLM equipment and our main goal was to show the capabilities of the finite element method in the evaluation of power input in the process. The results from our sensitivity analysis showed that packing density has a greater impact on the final temperature distributions compared with powder diameter variance. However, overall the thermal conductivity of the powder only showed significant effects below the melting point, otherwise the thermal conductivity no longer affected the temperature distributions. Among the three different power inputs analyzed, the temperature profile demonstrated that power inputs of 100 and 200 W are recommended when printing SS-304L rather than 400 W, which generates too high temperature in the powder bed, a non-favorable behavior that can induce high residual stresses and material evaporation.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Reference39 articles.
1. SLM Solutions Group AG
https://slm-solutions.com/
2. Renishaw Manufacturing Systems
https://renishaw.com/
3. Concept-laser
https://www.concept-laser.de/home.html
4. Thermal Modeling of 304L Stainless Steel for Selective Laser Melting: Laser Power Input Evaluation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献