Optimization Methodology for Innovative Automotive Crash Absorbers

Author:

D’Agostino Luca1,Bertocchi Luca1,Splendi Luca1,Strozzi Antonio1,Moruzzi Patrizio2

Affiliation:

1. Università degli Studi di Modena e Reggio Emilia, Modena, Italy

2. Ferrari S.p.A., Maranello, MO, Italy

Abstract

The simulation of vehicle crash impacts requires accurate and computationally expensive Finite Element analysis. An effective procedure consists in considering and establishing which improvement can be made on an equivalent sub-model of the full vehicle. In this way, all the analysis can be performed on smaller models, thus saving computational time. A full vehicle simulation is required only at the end of the design process to validate the results of the sub-model analysis. A software based on a genetic optimization algorithm has been developed in order to optimize the geometrical parameters of a variable-thickness crash absorber. A numerical study on the folding of thin-walled aluminum tubes with variable-thickness has been performed in order to achieve the maximum energy absorption-to-mass ratio. Moreover, the performance in terms of folding length and crush load peaks have been considered. Different optimization strategies have been implemented to find out which solution guarantees the achievement of the optimization target with the lowest computational cost. The results show how the approach proposed by the authors allows an efficient variable-thickness crash absorber to be obtained. In fact it performs better in term of crash behavior and energy dissipation-to-mass ratio, with respect to the original constant_thickness model.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3