Design Optimisation of Composite Overwrapped Pressure Vessel Through Finite Element Analysis

Author:

Alam Shah1,Divekar Abhijeet1

Affiliation:

1. Texas A&M University-Kingsville, Kingsville, TX

Abstract

COPVs are currently used at NASA to contain high-pressure fluids in propulsion, science experiments and life support applications. These COPVs have a significant weight advantage over all-metal vessels; but, as compared to all-metal vessels, COPVs require unique design, manufacturing, and test requirements. The most significant difference from metal pressure vessel designs is that COPVs involve a much more complex mechanical understanding due to the interplay between the composite overwrap and the inner liner. Often only limited analysis is performed to obtain an initial design, and then the design is refined through number of “build and burst” iterations. However, the cost in material and resources to fabricate multiple test specimens is extremely prohibitive. To avoid these high cost and time for build and burst iterations, FEA is often employed in an attempt to reduce the number of iterations required. FEA process becomes more of a design confirmation effort rather than a design iteration effort. In this research, we aimed to establish a detailed design optimization of a complete COPV through Finite Element simulation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3