Composite Overwrapped Pressure Vessel Design Optimization Using Numerical Method

Author:

Regassa YohannesORCID,Gari Jema,Lemu Hirpa G.ORCID

Abstract

Composite Overwrapped Pressure Vessels (COPVs) are widely used in fields including aeronautics and by companies such as SpaceX to hold high pressure fluids. They are favored for these applications because they are far lighter than all-metal vessels, although they demand special design, manufacturing, and testing requirements. In this study, finite element modeling was used to conducted stress and damage assessments on a composite overwrapped pressure vessel that has a 4 mm thick aluminum core cylinder. To develop the optimum COPV, the lamina sequences, thickness, and fiber winding angle were considered. The relationship between these variables and the composite-overwrapped structure’s maximum burst pressure bearing capacity was assessed. The ABAQUS composite modeler was used to design and generate 14 models of COPVs from carbon fiber/epoxy plies with a consistent thickness of 6.5 mm and various fiber angle orientations. The effects of the ply stacking order were analyzed by the finite element analysis approach for all designed models, which had 13 layers of uniform thickness but a varying fiber orientation. A ply stacking sequence of [55°, −55°] PP winding pattern had an optimum COPV design profile, with a burst pressure bearing capacity of 24 MPa. The stress–strain distribution along the geometry of the COPV was also obtained using the finite element method, and it was found that the distribution is uniform over the surface of the COPV and that its peak values are found towards the polar boss section of the COPV. Extreme stress gradients were noticed when the boss nears its geometrical transition to the dome phase. This factor is evident from the change in the ply thickness caused by the overlapped fiber orientation. The results obtained from this study are useful for the design and application of composite overwrapped pressure vessels.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3