Thermal-Enhanced and Cost-Effective 3D IC Integration With TSV (Through-Silicon Via) Interposers for High-Performance Applications

Author:

Lau John H.1,Chan Y. S.2,Lee S. W. Ricky2

Affiliation:

1. Industrial Technology Research Institute, Hsinchu, Taiwan

2. The Hong Kong University of Science and Technology, Hong Kong, China

Abstract

A low-cost (with bare chips) and high (electrical, thermal, and mechanical) performance 3D IC integration system-in-package (SiP) is designed and described. This system consists of a silicon interposer with through-silicon vias (TSV) [1–24] and redistribution layers (RDL), which carries the high-power flip chips with microbumps on its top surface and the low-power chips at its bottom surface. TSVs in the high- and low-power chips are optional but should be avoided. The backside of the high-power chips is attached to a heat spreader with or w/o a heat sink. This 3D IC integration system is supported (packaged) by a simple conventional organic substrate. The heat spreader (with or w/o heat sink) and the substrate are connected by a ring stiffener, which provides adequate standoff for the 3D IC integration system. This novel structural design offers potential solutions for high-power, high-performance, high pin-count, ultra fine-pitch, small real-estate, and low-cost applications. Thermal management and reliability of the proposed systems are demonstrated by simulations based on heat-transfer theory and time and temperature dependent creep theory.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances and Trends in Chiplet Design and Heterogeneous Integration Packaging;Journal of Electronic Packaging;2023-06-23

2. Recent Advances and Trends in Multiple System and Heterogeneous Integration With TSV Interposers;IEEE Transactions on Components, Packaging and Manufacturing Technology;2023-01

3. Multiple System and Heterogeneous Integration with TSV-Interposers;Chiplet Design and Heterogeneous Integration Packaging;2023

4. Challenges and recent prospectives of 3D heterogeneous integration;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2022

5. 2.5D IC Integration;Semiconductor Advanced Packaging;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3