Experimental Investigation of Ventilation Effectiveness in an Airliner Cabin Mockup

Author:

Patel Jignesh A.1,Jones Byron W.1,Hosni Mohammad H.1,Keshavarz Ali1

Affiliation:

1. Kansas State University, Manhattan, KS

Abstract

Frequent air travel and long flight duration makes the study of airliner cabin environmental quality a topic of utmost importance. Ventilation effectiveness is one of the more crucial factors affecting air quality in any environment. Ventilation effectiveness, along with the overall ventilation rate, is a measure of the ability of the air distribution system to remove internally generated pollutants or contaminants from a given space. Because of the high occupant density in an aircraft cabin, local variations in ventilation are important as a passenger will occupy the same space for the duration of the flight. Poor ventilation in even a small portion of the cabin could impact multiple people for extended time periods. In this study, the local effective ventilation rates and local ventilation effectiveness in an eleven-row, full-scale, Boeing 767 cabin mockup were measured. These measurements were completed at each of the 77 seats in the mockup. Each seat was occupied by a heated mannequin. In order to simulate the thermal load inside the cabin, the mannequins were wrapped with a heating wire to generate approximately 100 W (341 BTU/hour) of heat. Carbon dioxide was used as a tracer gas for the experiments and the tracer gas decay method was employed to calculate the local effective ventilation rate and local ventilation effectiveness. The overall ventilation rate, based on total supply air flow, was approximately 27 air changes per hour. Local ventilation effectiveness ranged from 0.86 to 1.02 with a mean value of 0.94. These ventilation effectiveness values are higher than typically found in other indoor applications and are likely due to the relatively high airspeeds present in the aircraft cabin and the high degree of mixing they provide. The uniformity is also good with no areas of particularly low ventilation effectiveness being identified. No clear patterns with respect to seat location, window versus center versus aisle, were found.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3