Heat Convective Effects on Turbulence and Airflow inside an B767 Aircraft Cabin

Author:

Shehadi MaherORCID

Abstract

Thermal plumes generated by human bodies can affect the temperature and humidity of the surrounding environment. An experimental study investigated the effects of thermal plumes formed by aircraft passengers on airflow and turbulence characteristics inside aircraft-cabins. An 11-row, wide-body B767 cabin mockup was used with actual seats, air diffusers and cabin profile. Thermal manikins were used simulating passengers in the cabin. Tracer gas and air speed inside the cabin were measured while the heat from the manikins was turned on and off to help understand the effects of the thermal heat released by the manikins. Results showed that tracer gas distribution were more uniformly and equally distributed around the release source and the air speed fluctuation were lower under cooler environments when the thermal manikins were turned off. Heated environments increased the values of turbulence kinetic energy and the turbulence intensity levels. However, the effects on the turbulence intensity were less significant compared to the turbulence kinetic energy. On the other hand, the dissipation rates were higher for unheated cases in the front and back sections of the mockup cabin. The relative uncertainty for tracer gas sampling ranged between ±5–14% for heated manikins versus ±8–17% for unheated manikins. Higher uncertainty levels accompanied the turbulence measurements due to the highly chaotic nature of the flow inside the cabin.

Funder

Federal Aviation Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference19 articles.

1. Comparison of SPIV Measurements for Different Test Room Air Inlet Configurations with the Same Inlet Reynolds Number;Lebbin;ASHRAE Trans.,2006

2. LES and RANS Simulation of Turbulent Airflow and Tracer Gas Injection in a Generic Aircraft Cabin Model

3. Computational Study of Turbulent Airflow in a Full-Scale Aircraft Cabin Mockup: Part 1 — Determination of Boundary Conditions at the Outlet of Air Diffusers

4. Impact of Personal Air Outlets on Person-to-Person Bio-Effluent Exposure in Aircraft Cabins;Anderson;ASHRAE Trans.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3