Influence of Titanium in Nickel-Base Superalloys on the Performance of Thermal Barrier Coatings Utilizing γ−γ′ Platinum Bond Coats

Author:

Tawancy H. M.1,Al-Hadhrami Luai M.1

Affiliation:

1. Center for Engineering Research and Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1639, Dhahran 31261, Saudi Arabia

Abstract

Titanium is a key element in nickel-base superalloys needed with aluminum to achieve the desired volume fraction of the strengthening γ′-phase. However, depending upon its concentration, titanium can degrade the adherence of aluminum oxide by forming TiO2 particles near the oxide-metal interface. This effect is extended to thermal barrier coating systems where in this case, the bond coat replaces the superalloy as the underlying substrate. Noting that the onset of failure of thermal barrier coating systems coincides with the first spall of the thermally grown oxide, titanium level in the superalloy can have an important effect on the useful life of the coating. Therefore, this study was undertaken to examine the effect of titanium on the performance of a thermal barrier coating system. Included in the study were two Ni-base superalloys with similar chemical composition except for the Ti content and a Pt-containing bond coat consisting of γ′+γ-phases all top coated with zirconia stabilized by 7 wt % yttria. Coating performance was evaluated from thermal exposure tests at 1150°C with a 24 h cycling period to room temperature. Various electron-optical techniques were used to characterize the microstructure. The coating system on the low-Ti alloy was found to outperform that on the high-Ti alloy. However, for both alloys, failure was observed to occur by loss of adhesion between the thermally grown oxide and underlying bond coat.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3