Role of Platinum in Thermal Barrier Coatings Used in Gas Turbine Blade Applications

Author:

Tawancy H. M.1,Al-Hadhrami Luai M.1

Affiliation:

1. Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1639, Dhahran 31261, Saudi Arabia

Abstract

Current technology of thermal barrier coating systems used in gas turbine blade applications relies on the use of a metallic bond coat, which has a twofold function: (i) it develops a thin layer of aluminum oxide enhancing the adhesion of the ceramic top coat and (ii) it provides an additional resistance to oxidation. It was the objective of this study to develop an understanding of the role of platinum in bond coats of the diffusion-type deposited on a nickel-based superalloy. Two Pt-containing bond coats were included in the study: (i) a platinum-aluminide and (ii) a bond coat formed by interdiffusion between an electroplated layer of platinum and the superalloy substrate. In both cases, the top ceramic coat was yttria-stabilized zirconia. For reference purposes, a simple aluminide bond coat free of Pt was also included in the study. Thermal exposure tests at 1150°C with a 24 h cycling period at room temperature were used to compare the coating performance. Microstructural features were characterized by various electron-optical techniques. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Of the two bond coats studied, a surface layer of Pt-rich gamma prime phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and beta phase. This could be related to the effectiveness of gamma prime phase as a sink for titanium minimizing its detrimental effect on the adherence of aluminum oxide.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. Non-Metallic Materials for Gas Turbine Engines: Are they Real;Sims;Advanced Materials and Processes

2. Physical Vapor Deposition Coatings for Aircraft Turbine Blades;Lammermann;Advanced Materials and Processes

3. Mechanisms Controlling the Durability of Thermal Barrier Coatings;Evans;Prog. Mater. Sci.

4. The Effect of Pre-Oxidation Treatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings With Platinum-Aluminide Bond Coats;Tolpygo;Surf. Coat. Technol.

5. Effect of Pt on the Oxide-to-Metal Adhesion in Thermal Barrier Coating Systems;Tawancy;J. Mater. Sci.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3