Stresses in a Long Cylindrical Conductor Moving Axially Through a Pair of Electrode Plates Under Stationary Conditions

Author:

Westerling L.1,Lundberg B.2

Affiliation:

1. Swedish Defense Research Agency (FOI), SE-164 90 Stockholm, Sweden

2. The Angstrom Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden

Abstract

In a conductor carrying electric current, the Lorentz force gives rise to mechanical stresses. Here, we study a long elastic cylindrical conductor that moves axially with constant velocity through two electrode plates. The aims are to explore how the stresses in the conductor depend on the velocity in the stationary case of constant current and to assess the validity of the analytic method used. The diffusion equation for the magnetic flux density is solved by use of Fourier transform, and the current density is determined. The stresses, due to the Lorentz force, are found by use of an analytic method combining the solutions of a quasi-static radial problem of plane deformation and a dynamic axial problem of uniaxial stress. They are also determined through FE analysis. Radial field profiles between the plates indicate a velocity skin effect signifying that the current and the magnetic field are concentrated near the cylindrical surface up-stream and are more uniformly distributed downstream. The radial and hoop stresses are compressive, while the axial stress is tensile. The von Mises effective stress increases towards the symmetry axis, in the downstream direction, and with velocity. There are circumstances under which a large current can produce an effective stress in a copper conductor of the order of the yield stress without causing a significant temperature rise. The stresses obtained with the two methods agree well, even relatively near the electrode plates. The analytical method should be useful in similar cases as well as for the provision of test cases for more general simulation tools.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3