Magnetomechanical Instabilities in Elastic-Plastic Cylinders, Part II: Plastic Response

Author:

Littlefield D. L.1

Affiliation:

1. Southwest Research Institute, San Antonio, TX 78228

Abstract

The analysis of elastic instabilities in metal cylinders when subjected to electromagnetic fields (Littlefield, 1996a) is extended in this work to include elastic-plastic flow. The cylinder is assumed to be infinitely long and perfectly conducting. The Prandtl-Reuss elastic-plastic material model is the assumed constitutive law, with the von Mises yield criterion employed to limit the effective stress. An axial electric current, assumed to be conducting along the surface of the cylinder, generates a confining pressure, causing plastic flow that is initially assumed to be uniform throughout the cross section. The propagation of small axisymmetric disturbances to this uniform motion is studied by applying linear perturbation theory. Solutions to these equations exhibit a wide range of instability modes, as was the case for the purely elastic results, and the frequency of the oscillating disturbances appears to be suppressed by electromagnetic effects. However, in contrast to the elastic result, no threshold magnetic field exists, and distending instabilities are possible for all levels of electric current. Physical mechanisms resulting in these distinctions are suggested.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3