Affiliation:
1. Stress Engineering Services, Houston, TX
Abstract
Viscous damping due to drag on mooring lines and risers is seastate dependent and significantly affects the motion of a floating platform in deep water, particularly in everyday seastates. This in turn impacts design of the risers, which are typically controlled by fatigue. The dynamic interaction between the platform, mooring and risers cannot be evaluated using conventional uncoupled analysis tools, where each is analyzed separately. Rather, coupled analysis is required to provide a consistent way to model the drag-induced damping from mooring lines and risers. We describe a coupled, frequency domain approach (RAMS – Rational Approach to Marine Systems) for calculating the dynamic response of vessel, mooring and risers. In coupled analysis, the risers and mooring lines are included in the model along with the floater. In this way, damping of the floater motion due to drag on the mooring lines and risers is incorporated directly. It is also valuable to estimate the linear damping factors from the full, coupled analysis results. These damping factors may then, for example, be used in an equivalent linear model of the floating system in which the stiffness and damping effects of the mooring and risers are represented as additions to the floater stiffness and damping matrices. Such a model could be used to efficiently design a subsystem (e.g.; an export riser). We describe a technique to determine the equivalent linear damping factors from the coupled analysis results. This paper also illustrates the use of these methods for a West Africa FPSO. The need for coupled analysis is shown by comparing results from the fully coupled model with those obtained using an uncoupled method in which the mooring line damping is approximated.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献