Equivalent Clearance Model for Solving Thermohydrodynamic Lubrication of Slider Bearings With Steps

Author:

Ogata Hideki1,Sugimura Joichi2

Affiliation:

1. IHI Corporation, Yokohama, 235-8501, Japan e-mail:

2. Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan e-mail:

Abstract

This study focuses on the thermohydrodynamic lubrication (THD) analysis of fluid film bearings with steps on the bearing surface, such as Rayleigh step. In general, the Reynolds equation does not satisfy the continuity of fluid velocity components at steps. This discontinuity results in the difficulty to solve the energy equation for the lubricants by finite differential method (FDM), because the energy equation needs the velocity components explicitly. The authors have solved this issue by introducing the equivalent clearance height and the equivalent gradient of the clearance height at steps. These parameters remove the discontinuity of velocity components, and the Reynolds equations can be solved for any bearing surfaces with step regions by FDM. Moreover, this method results in pseudocontinuous velocity components, which enables the energy equation to be solved as well. This paper describes this method with one-dimensional and equal grids model. The numerical results of pressure and temperature distributions by the proposed method for an infinite width Rayleigh step bearing agree well with the results obtained by solving full Navier–Stokes equations with semi-implicit method for pressure-linked equations revised (SIMPLER) method.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3