Thermohydrodynamic Behavior of a Slider Pocket Bearing

Author:

Dobrica Mihai B.1,Fillon Michel1

Affiliation:

1. Solid Mechanics Laboratory, University of Poitiers, U.M.R C.N.R.S. 6610, SP2MI, Bd. Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

Abstract

Pocket-pads or steps are often used in journal bearing design, allowing improvement of the latter’s dynamic behavior. Similar “discontinuous” geometries are used in designing thrust bearing pads. A literature review shows that, to date, only isoviscous and adiabatic studies of such geometries have been performed. The present paper addresses this gap, proposing a complete thermohydrodynamic (THD) steady model, adapted to three-dimensional (3D) discontinuous geometries. The model is applied to the well-known geometry of a slider pocket bearing, operating with an incompressible viscous lubricant. A model based on the generalized Reynolds equation, with concentrated inertia effects, is used to determine the 2D pressure distribution. On this basis, a 3D field of velocities is constructed which, in turn, allows the resolution of the 3D energy equation. Using a variable-size grid improves the accuracy in the discontinuity region, allowing an evaluation of the magnitude of error induced by Reynolds assumptions. The equations are solved using the finite volume method. This ensures good convergence even when a significant reverse flow is present. Heat evacuation through the pad is taken into account by solving the Laplace equation with convective boundary conditions that are realistic. The runner’s temperature, assumed constant, is determined by imposing a zero value for the global heat flux balance. The constructed model gives the pressure distribution and velocity fields in the fluid, as well as the temperature distribution across the fluid and solid pad. Results show important transversal temperature gradients in the fluid, especially in the areas of minimal film thickness. This further justifies the use of a complete THD model such as the one employed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3