Thermal Gap Conductance of Conforming Surfaces in Contact

Author:

Song S.1,Yovanovich M. M.2,Goodman F. O.3

Affiliation:

1. International Business Machine Corporation, Poughkeepsie, NY 12602

2. Microelectronics Heat Transfer Laboratory, Department of Mechanical Engineering

3. Department of Applied Mathematics and Department of Physics, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Heat transfer through gas layers of contact interfaces formed by two microscopically rough surfaces is studied. Rarefied gas conduction between smooth parallel plates is examined with data obtained from the literature. Two important dimensionless parameters are introduced; one representing the ratio of the rarefied gas resistance to the continuum gas resistance, and the other representing gas rarefaction effects. Effects of gas rarefaction and surface roughness are studied in relation to the parallel plates case. It is proposed that the effective gap thickness at light loads may be estimate by a roughness parameter, the maximum peak height Rp. Experiments were performed to measure gap conductance for a number of Stainless Steel 304 pairs and Nickel 200 pairs over a range of roughnesses and gas pressures. Three different types of gases, helium, argon, and nitrogen, were employed as the interstitial gas. The comparison between the theory and the measured values of gap conductance shows excellent agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3