Large Eddy Simulation of Transitional Boundary Layers at High Free-Stream Turbulence Intensity and Implications for RANS Modeling

Author:

Lardeau Sylvain1,Li Ning1,Leschziner Michael A.1

Affiliation:

1. Department of Aeronautics, Imperial College London, Prince Consort Road, South Kensington, London SW7 2AZ, UK

Abstract

Abstract Large-eddy simulations of transitional flows over a flat plate have been performed for different sets of free-stream-turbulence conditions. Interest focuses, in particular, on the unsteady processes in the boundary layer before transition occurs and as it evolves, the practical context being the flow over low-pressure turbine blades. These considerations are motivated by the wish to study the realism of a RANS-type model designed to return the laminar fluctuation energy observed well upstream of the location at which transition sets in. The assumptions underlying the model are discussed in the light of turbulence-energy budgets deduced from the simulations. It is shown that the pretransitional field is characterized by elongated streaky structures which, notwithstanding their very different structural properties relative to fully established turbulence, lead to the amplification of fluctuations by conventional shear-stress/shear-strain interaction, rather than by pressure diffusion, the latter being the process underpinning the RANS-type transitional model being investigated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3