Data-Driven Transition Models for Aeronautical Flows with a High-Order Numerical Method

Author:

Chen Yanjun,Wang Shengye,Liu Wei

Abstract

Over the past years, there has been innovative ideas about data-driven turbulence modeling proposed by scholars all over the world. This paper is a continuity of these significant efforts, with the aim of offering a better representation for turbulence physics. Previous works mainly focus on turbulence viscosity or Reynolds stress, while there are few works for turbulence transition. In our work, two mapping functions between average flow parameters and transition intermittency, a virtual physical quantity describing the amount of turbulence at a given position, are refactored, respectively, with neuron networks and random forests. These two functions are then coupled with the Spalart–Allmaras (SA) model to reconstitute two models for transition prediction. To demonstrate that these two coupled models provide improved prediction accuracy on transition compared with previous SA models, we conduct test cases all under a high-order weighted compact nonlinear scheme (WCNS). The prediction results of both coupled models significantly improved the capture of natural transitions occurring in the flows. Furthermore, the interpolation generalisation and extrapolation generalisation abilities of the coupled models are also demonstrated in this paper. The results emphasize the potential for machine learning as a supplementary in turbulence transition modeling.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province in China

Scientific Research Project of National University of Defense Technology

National Key Project

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference39 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3