Affiliation:
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
Abstract
Abstract
In the tip clearance flow, the dominant vortex is the tip leakage vortex (TLV), which has a significant impact on the hydraulic and cavitation performance of axial flow machineries. In order to reveal the impact mechanism of the gap size on the TLV, gap flows with two gap sizes, i.e., τ=0.2 (2 mm) and τ=1.0 (10 mm), are numerically investigated. A NACA0009 hydrofoil is selected to create the gap flow, with an incoming velocity of 10 m/s and an attack angle of 10 deg. The results show that the two flow cases are significantly different in terms of vortex feature and the leakage flow distribution. In the small gap, a type of jet-pattern flow appears, whereas a type of rolling-pattern flow passes over the large gap. The vertical velocity gradient of the leakage flow has a decisive influence on the TLV trajectory. In addition, for the large gap, the axial velocity in the vortex center exceeds the incoming flow. This jet-like state of axial velocity can be maintained for a long distance, making the vortex more stable. However, the axial velocity in the case of τ=0.2 cannot stay at the jet-like state and rapidly switches to a wake-like state.
Funder
National Natural Science Foundation of China
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献