Experimental Study of Effects of Volumetric Porosity and Critical Meniscus Radius on Evaporation/Boiling From Thin Capillary Wicks

Author:

Li Chen1,Peterson G. P.1

Affiliation:

1. Rensselaer Polytechnic Institute

Abstract

The evaporation/boiling heat transfer and critical heat flux (CHF) from surfaces coated with multiple, uniform layers of sintered isotropic copper mesh were studied experimentally in an atmospheric environment. Two series of investigations were conducted: one was designed to study the effects of the critical meniscus radius and effective pore size, which are controlled by the wire diameter and mesh number, with the volumetric porosity and wick thickness are held constant; and a second to study the effects of volumetric porosity for a constant wick thickness and effective pore size. The experimental results indicate that the critical heat flux (CHF) was strongly dependent on the critical meniscus radius and effective pore size, as well as the volumetric porosity; while the evaporation/boiling heat transfer coefficient was significantly affected by critical meniscus radius and effective pore size, but not strongly dependent on the volumetric porosity. The data further illustrate that the menisci at CHF are located in the corner formed by wire and heated wall and between the wires in both the vertical and horizontal directions. The minimum value of these three menisci determined the maximum capillary pressure generated through the capillary wick. Sample structure and fabrication processes as well as the test procedures, are described in detail and discussed. The experimental results and observations are systematically presented and analyzed.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3