Experimental Study of Thickness Effects on Evaporation/Boiling on Thin Sintered Copper Mesh Surfaces

Author:

Li Chen1,Peterson G. P.1,Wang Yaxiong2

Affiliation:

1. Rensselaer Polytechnic Institute, Troy, NY

2. Foxconn Thermal Technology, Inc., Austin, TX

Abstract

Evaporation/boiling from surfaces coated with multiple, uniform layers of sintered, isotropic, copper-mesh is studied experimentally. The investigation focuses on the effect of the wick thickness on the steady-state evaporation/boiling heat transfer coefficient and the critical heat flux under atmospheric pressure conditions. An optimal sintering process was developed and employed to prepare the test articles. This process minimizes the interface thermal contact resistance between the heated wall and wick, as well as enhancing the contact conditions between the layers of copper mesh. Due to the reduction in the thermal contact resistance between the wall and copper mesh, extremely high evaporation/boiling heat transfer coefficients were achieved. These values, which varied with input heat flux and wick thickness, were from 5 to 20 times higher than those previously reported by other researchers. The critical heat flux (CHF) was also significantly enhanced. The experimental results also indicated that while the evaporation/boiling heat transfer coefficient is not affected by wick thickness, the CHF for steady-state operation is strongly dependent on the wick layer thickness. In addition, the CHF increases proportionally with the wick thickness when the wick structure, porosity and pore size are held constant. Sample structure and fabrication processes as well as test procedures are described and discussed in detail and the experimental results and observations are systematically presented and analyzed. Evaporation/boiling Heat transfer regimes from these wick structures are identified and discussed based on the visual observations of the phase-change phenomena and the relative relationship between the heat flux and superheat.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3