Cryogenic Two-Phase Flow and Heat Transfer Under Terrestrial and Microgravity

Author:

Yuan Kun1,Chung J. N.1,Ji Yan1

Affiliation:

1. University of Florida

Abstract

This paper presents experimental investigations of cryogenic nitrogen two-phase flow in horizontal transparent tubes (diameters of 11.1mm) under terrestrial and micro-gravity (10−4g) conditions during the chilldown process, and the focus is on the film boiling region. Constant mass flow rate is achieved by a motor driven bellows, and three different mass fluxes from 9.2 to 27.6kg/m2 · s are tested in the experiments. A drop tower is applied to simulate the micro-gravity environment. During the chilldown process, we measure the time-dependent temperatures at three circumferential locations at different downstream locations. Video images are recorded for identifying the flow patterns. The experiments show that under normal gravity, the flow pattern change from dispersed flow to inverted annular flow and then to unsteady stratified flow according to different wall temperatures, the temperature differences between the lower and upper part of the test section increase with increasing flow rate. Under microgravity, when the temperature is high, the liquid chunks trend to be lifted up and confined mainly in the central core of the tube; when the temperature is low, the liquid chunks are more evenly dispersed inside the whole tube, and some touch the upper wall. It is also found that the measured wall temperatures drop more quickly under microgravity condition compared with that under normal gravity. Moreover, under microgravity condition, the measured temperatures drop more quickly with lower wall temperature. The gravity effect on the quenching curves is alleviated with increasing mass flow rate. Thus gravity effect is more important in low mass flow rate two-phase flow.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3