Methods and Characterization of Pick and Place Microassembly

Author:

Subramaniam V.1,Last M. E.1,Pister K. S. J.1

Affiliation:

1. University of California at Berkeley

Abstract

Microassembly of MEMS structures using serial pick-and place has been demonstrated as a method for constructing complex three-dimensional microstructures. A new methodology to perform pick-and-place microassembly using a 3 DOF micromanipulator is demonstrated here. In this approach, the "pick" operation is performed on one chip, while the "place" operation is performed on a second chip mounted orthogonally to it under a microscope. This removes the need for the rotation of parts during assembly as required in previous works thus creating a significantly simpler assembly process. Also new in this work is the characterization of the contact resistance and the rigidity of assembled microstructures. The contact resistance of assembled microparts coated with 30nm of gold is measured to be approximately 12Ωusing a four-point measurement. The force required to pull out a micropart from a socket (into which it is assembled) is characterized along all three axes and found to be over 5mN in each case. The relationship between the force taken to engage the sockets and the force to pull out a micropart is measured to be linear. An electrostatic inchworm motor with extended range and a vertical thermal actuator are demonstrated which are manufactured using microassembly. Thus this assembly process with mechanically rigid assemblies is shown to have a number of potential applications.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastomer-Based Micromechanical Energy Storage System;Microelectromechanical Systems;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3