Cascade Control With Friction Compensasion Based on Artificial Neural Network for a Hydraulic Actuator

Author:

Machado Cla´udio L. E. d’Elia1,Guenther Raul2,De Negri Victor Juliano2,Gomes Sebastia˜o Ci´cero Pinheiro3

Affiliation:

1. Pelotas Federal Centre for Technological Education

2. Federal University of Santa Catarina

3. Federal University of Rio Grande

Abstract

This paper addresses the friction compensation in hydraulic actuators using an artificial neural network combined with a suitable control technique. The proposed neural network is trained off-line and allows calculate an estimative of the friction force on-line very quickly based on the hydraulic force and on the cylinder velocity. The estimated friction force is introduced directly in the force line of the system using a cascade controller, in which the hydraulic actuator is interpreted as two interconnected subsystems: a mechanical one driven by a hydraulic one. The convergence properties of the closed loop system are established using the Lyapunov method. Experimental results validate the main theoretical results of the proposed strategy.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3