Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

Author:

Marhöfer David Maximilian1,Tosello Guido2,Islam Aminul2,Hansen Hans Nørgaard2

Affiliation:

1. Department for Mechanical Engineering, Technical University of Denmark, Produktionstorvet, Building 427A, 2800 Kongens Lyngby, Denmark e-mail:

2. Department for Mechanical Engineering, Technical University of Denmark, Produktionstorvet, Building 427 A, 2800 Kongens Lyngby, Denmark e-mail:

Abstract

Just as in conventional injection molding of plastics, process simulations are an effective and interesting tool in the area of micro-injection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (a microfluidic distributor and a mixer). The paper describes how the two devices were meshed in the simulations software to obtain a proper simulation model and where the challenges arose. One of the main goals of the simulations was the investigation of the filling of the parts. Great emphasis was also on the optimization of selected gate designs for both plastic parts. Subsequently, the simulation results were used to answer the question which gate design was the most appropriate with regard to the process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization of this design in practice as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software were described. Ultimately, the simulation results were validated by cross-checking the flow front behavior of the polymer flow predicted by the simulation with the actual flow front at different time steps. These were realized by molding short shots with the realized molds and were compared to the simulations at the global, i.e., part level and at the local, i.e. feature level.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3