Rapid tooling: investigation of soft-tooled micro-injection moulding process characteristics using in-line measurements and surface metrology

Author:

Gülçür Mert,Couling Kevin,Goodship Vannessa,Charmet Jérôme,Gibbons Gregory J.

Abstract

Purpose The purpose of this study is to demonstrate and characterise a soft-tooled micro-injection moulding process through in-line measurements and surface metrology using a data-intensive approach. Design/methodology/approach A soft tool for a demonstrator product that mimics the main features of miniature components in medical devices and microsystem components has been designed and fabricated using material jetting technique. The soft tool was then integrated into a mould assembly on the micro-injection moulding machine, and mouldings were made. Sensor and data acquisition devices including thermal imaging and injection pressure sensing have been set up to collect data for each of the prototypes. Off-line dimensional characterisation of the parts and the soft tool have also been carried out to quantify the prototype quality and dimensional changes on the soft tool after the manufacturing cycles. Findings The data collection and analysis methods presented here enable the evaluation of the quality of the moulded parts in real-time from in-line measurements. Importantly, it is demonstrated that soft-tool surface temperature difference values can be used as reliable indicators for moulding quality. Reduction in the total volume of the soft-tool moulding cavity was detected and quantified up to 100 cycles. Data collected from in-line monitoring was also used for filling assessment of the soft-tool moulding cavity, providing about 90% accuracy in filling prediction with relatively modest sensors and monitoring technologies. Originality/value This work presents a data-intensive approach for the characterisation of soft-tooled micro-injection moulding processes for the first time. The overall results of this study show that the product-focussed data-rich approach presented here proved to be an essential and useful way of exploiting additive manufacturing technologies for soft-tooled rapid prototyping and new product introduction.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference40 articles.

1. 3D-Printed splitter for use of a single ventilator on multiple patients during COVID-19;3D Printing and Additive Manufacturing,2020

2. A methodology for setting the injection moulding process parameters for polymer rapid tooling inserts;Rapid Prototyping Journal,2019

3. Micro-Injection moulding in-Line quality assurance based on product and process fingerprints;Micromachines,2018

4. Secrets of success in micro molding;Plastics Technology,2012

5. Micro molding thin-walled devices;Manufacturing Engineering,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3