Early Prediction of Human Intention for Human–Robot Collaboration Using Transformer Network

Author:

Zhang Xinyao1,Tian Sibo2,Liang Xiao3,Zheng Minghui2,Behdad Sara1

Affiliation:

1. University of Florida Department of Environmental Engineering Sciences, , Gainesville, FL 32611

2. University at Buffalo Department of Mechanical and Aerospace Engineering, , Buffalo, NY 14260

3. University at Buffalo Department of Civil, Structural, and Environmental Engineering, , Buffalo, NY 14260

Abstract

Abstract Human intention prediction plays a critical role in human–robot collaboration, as it helps robots improve efficiency and safety by accurately anticipating human intentions and proactively assisting with tasks. While current applications often focus on predicting intent once human action is completed, recognizing human intent in advance has received less attention. This study aims to equip robots with the capability to forecast human intent before completing an action, i.e., early intent prediction. To achieve this objective, we first extract features from human motion trajectories by analyzing changes in human joint distances. These features are then utilized in a Hidden Markov Model (HMM) to determine the state transition times from uncertain intent to certain intent. Second, we propose two models including a Transformer and a Bi-LSTM for classifying motion intentions. Then, we design a human–robot collaboration experiment in which the operator reaches multiple targets while the robot moves continuously following a predetermined path. The data collected through the experiment were divided into two groups: full-length data and partial data before state transitions detected by the HMM. Finally, the effectiveness of the suggested framework for predicting intentions is assessed using two different datasets, particularly in a scenario when motion trajectories are similar but underlying intentions vary. The results indicate that using partial data prior to the motion completion yields better accuracy compared to using full-length data. Specifically, the transformer model exhibits a 2% improvement in accuracy, while the Bi-LSTM model demonstrates a 6% increase in accuracy.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3