Wear-Rate Uncertainty Analysis

Author:

Schmitz Tony L.1,Action Jason E.1,Burris David L.1,Ziegert John C.1,Sawyer W. Gregory1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

Abstract

Wear due to relative motion between component surfaces is one of the primary modes of failure for many engineered systems. Unfortunately, it is difficult to accurately predict component life due to wear as reported wear rates generally exhibit large scatter. This paper analyzes a reciprocating tribometer in an attempt to understand the instrument-related sources of the scatter in measured wear rates. To accomplish this, an uncertainty analysis is completed for wear-rate testing of a commercially available virgin polytetrafluoroethylene pin on 347 stainless steel counterface. It is found that, for the conditions selected in this study, the variance in the experimental data can be traced primarily to the experimental apparatus and procedure. Namely, the principal uncertainty sources were found to be associated with the sample mass measurement and volume determination.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3