Influence of Post-Processing and Build Direction on the Wear Behavior of Laser Powder Bed Fused Maraging Steel

Author:

Kuriachen Basil1,Vinay Katari11,Joshy Jino11

Affiliation:

1. National Institute of Technology Calicut Advanced Manufacturing Centre, Department of Mechanical Engineering, , Calicut Kozhikode, Kerala 673601 , India

Abstract

Abstract The present study investigates the effect of post-processing (heat treatment: solutionizing at 850 °C for 2 h with aging at 490 °C for 3 h and cryogenic treatment at −196 °C for 24 h) and the effect of build direction (along the build direction (BD) and perpendicular to the build direction (PBD)) on the wear behavior of maraging steel fabricated by laser powder bed fusion (LPBF). The results are also compared with conventional hot forged samples. The pin-on disc equipment was used to conduct the wear experiments with an EN31 steel disk as the counter body. Heat treatment decreased the wear-rate of LPBF material by 54.78% and 83.84% in BD and PBD, respectively. This is due to the restriction of grain expansion by the Ni-based precipitants in age-hardening treatment. The cryogenic treatment further decreased the wear-rate of LPBF material by 87.84% and 90.9% in BD and PBD, respectively. This significant reduction can be attributed to the change of phase to martensite, as confirmed through microstructure and X-ray diffraction (XRD) analysis. Moreover, hot forged material also obtained a reduced wear-rate after heat and cryogenic treatments. The highest wear resistance was found with the LPBF cryo-treated BD sample due to increased hardness from 388 HV to 640 HV. The worn surface of test samples was examined by using scanning electron microscopy (SEM), energy dispersive X-ray, 3D profilometer, and XRD analysis. Oxidation wear, adhesive wear, and abrasive wear are the predominant wear mechanisms identified using SEM.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3