Measurements of Decompression Wave Speed in Simulated Anthropogenic Carbon Dioxide Mixtures Containing Hydrogen

Author:

Botros K. K.1,Geerligs J.2,Rothwell B.3,Robinson T.4

Affiliation:

1. NOVA Chemicals Centre for Applied Research, Calgary AB T2E 7K7, Canada e-mail:

2. NOVA Chemicals Centre for Applied Research, Calgary AB T2E 7K7, Canada

3. Brian Rothwell Consulting Inc., Calgary AB T3A 5V9, Canada

4. TransCanada PipeLines Limited, Calgary AB T2P 5H1, Canada

Abstract

In order to determine the material fracture resistance necessary to provide adequate control of ductile fracture propagation in a pipeline, a knowledge of the decompression wave speed following the quasi-instantaneous formation of an unstable, full-bore rupture is necessary. The thermodynamic and fluid dynamics background of such calculations is understood, but predictions based on specific equations of state (EOS) need to be validated against experimental measurements. A program of tests has been conducted using a specially constructed shock tube to determine the impact of impurities on the decompression wave speed in carbon dioxide (CO2), so that the results can be compared to two existing theoretical models. In this paper, data and analysis results are presented for three shock tube tests involving anthropogenic CO2 mixtures containing hydrogen as the primary impurity. The first mixture was intended to represent a typical scenario of precombustion carbon capture and storage (CCS) technology, where typically the concentration of CO2 is around 95–97% (mole). The second mixture represents a worst case scenario of this technology with high level of impurities (with CO2 concentration around 85%). The third test represents a typical chemical-looping combustion process. It was found that the extent of the plateau on the decompression wave speed curves in these tests depends on the location of the phase boundary crossing along the bubble-point curve. The closer the phase boundary crossing to the critical point, the shorter the plateau. This is primarily due to the change in magnitude of the drop in the speed of sound at phase boundary crossing. For the most part, the predictions of the plateau pressure by both of the EOS that were evaluated, GERG-2008 and Peng–Robinson (PR), are in good agreement with measurements by the shock tube. This by no means reflects overall good performance of either EOS, but was rather due to the fact that the isentropes intersected the phase envelope near the critical point, or that the concentration of H2 was relatively low, either in absolute terms or relative to other impurity constituents. Hence, its influence in causing inaccurate prediction of the plateau pressure is lessened. An example of pipeline material toughness required to arrest ductile fracture is presented which shows that predictions by GERG-2008 are more conservative and are therefore recommended.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3