Affiliation:
1. NOVA Chemicals Centre for Applied Research, Calgary AB T2E 7K7, Canada e-mail:
2. NOVA Chemicals Centre for Applied Research, Calgary AB T2E 7K7, Canada
3. Brian Rothwell Consulting Inc., Calgary AB T3A 5V9, Canada
4. TransCanada PipeLines Limited, Calgary AB T2P 5H1, Canada
Abstract
In order to determine the material fracture resistance necessary to provide adequate control of ductile fracture propagation in a pipeline, a knowledge of the decompression wave speed following the quasi-instantaneous formation of an unstable, full-bore rupture is necessary. The thermodynamic and fluid dynamics background of such calculations is understood, but predictions based on specific equations of state (EOS) need to be validated against experimental measurements. A program of tests has been conducted using a specially constructed shock tube to determine the impact of impurities on the decompression wave speed in carbon dioxide (CO2), so that the results can be compared to two existing theoretical models. In this paper, data and analysis results are presented for three shock tube tests involving anthropogenic CO2 mixtures containing hydrogen as the primary impurity. The first mixture was intended to represent a typical scenario of precombustion carbon capture and storage (CCS) technology, where typically the concentration of CO2 is around 95–97% (mole). The second mixture represents a worst case scenario of this technology with high level of impurities (with CO2 concentration around 85%). The third test represents a typical chemical-looping combustion process. It was found that the extent of the plateau on the decompression wave speed curves in these tests depends on the location of the phase boundary crossing along the bubble-point curve. The closer the phase boundary crossing to the critical point, the shorter the plateau. This is primarily due to the change in magnitude of the drop in the speed of sound at phase boundary crossing. For the most part, the predictions of the plateau pressure by both of the EOS that were evaluated, GERG-2008 and Peng–Robinson (PR), are in good agreement with measurements by the shock tube. This by no means reflects overall good performance of either EOS, but was rather due to the fact that the isentropes intersected the phase envelope near the critical point, or that the concentration of H2 was relatively low, either in absolute terms or relative to other impurity constituents. Hence, its influence in causing inaccurate prediction of the plateau pressure is lessened. An example of pipeline material toughness required to arrest ductile fracture is presented which shows that predictions by GERG-2008 are more conservative and are therefore recommended.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference14 articles.
1. Measurements of Decompression Wave Speed in Pure Carbon Dioxide and Comparison With Predictions by EOS;ASME J. Pressure Vessel Technol.,2015
2. Shock Tube Measurements of Decompression Wave Speed in CO2 With Impurities,2013
3. Maxey, W. A., Kiefner, J. F., Eiber, R. J., and Duffy, A. R., 1972, “Ductile Fracture Initiation, Propagation and Arrest in Cylindrical Vessels,” ASTM, Philadelphia, PA, Fracture Toughness ASTM STP 514, pp. 70–81.10.1520/STP38819S
4. What Future for Carbon Capture and Sequestration?;Environ. Sci. Technol.,2001
5. Typical IGCC Configuration;National Energy Technology Laboratory,2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献