Measurements of Decompression Wave Speed in Pure Carbon Dioxide and Comparison With Predictions by Equation of State

Author:

Botros K. K.1,Geerligs J.2,Rothwell B.3,Robinson T.4

Affiliation:

1. NOVA Chemicals Centre for Applied Research, Calgary, AB T2E 7K7, Canada e-mail:

2. NOVA Chemicals Centre for Applied Research, Calgary, AB T2E 7K7, Canada

3. Brian Rothwell Consulting Inc., Calgary, AB T3A 5V9, Canada

4. TransCanada PipeLines Limited, Calgary, AB T2P 5H1, Canada

Abstract

Carbon dioxide capture and storage (CCS) is one of the technologies that have been proposed to reduce emissions of carbon dioxide (CO2) to the atmosphere. CCS will require the transportation of the CO2 from the “capture” locations to the “storage” locations via large-scale pipeline projects. One of the key requirements for the design and operation of pipelines in all jurisdictions is fracture control. Supercritical CO2 is a particularly challenging fluid from this point of view, because its thermodynamic characteristics are such that a very high driving force for fracture can be sustained for a long time. Even though CO2 is not flammable, it is an asphyxiating gas that is denser than air, and can collect in low-lying areas. Additionally, it is well known that any pipeline rupture, regardless of the nature of the fluid it is transporting, has a damaging reputational, commercial, logistic, and end user impact. Therefore, it is as important to control fracture in a CO2 pipeline as in one transporting a flammable fluid. With materials specified appropriately for the prevention of brittle failure, the key element is the control of propagating ductile (or tearing) fracture. The determination of the required toughness for the arrest of ductile fracture requires knowledge of the decompression behavior of the contained fluid, which in turn requires accurate knowledge of its thermodynamic characteristics along the decompression isentrope. While thermodynamic models based on appropriate EOS (equations of state) are available that will, in principle, allow determination of the decompression wave speed, they, in general, have not been fully validated for very rapid transients following a rupture. This paper presents experimental results of the decompression wave speed obtained from shock tube tests conducted on pure CO2 from different initial conditions, and comparison with predictions by models based on GERG-2008, Peng-Robinson, and BWRS equations of state (EOS). These tests were conducted as a baseline before introducing various impurities.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3