A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification

Author:

Sun Ning1,Fang Yongchun2,Chen He3

Affiliation:

1. Assistant Professor Mem. ASME Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300353, China e-mail:

2. Professor Mem. ASME Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300353, China e-mail:

3. Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300353, China e-mail:

Abstract

Disturbances and uncertainties are unfavorable elements that always accompany industrial mechatronic systems including cranes. If not fully considered or properly dealt with, they would badly influence the control system performance and degrade the working efficiency. Though traditional sliding mode control (SMC) methods are powerful to address these issues, they are discontinuous and might bring potential damages to the actuating devices. In addition, most existing methods cannot involve such practical constraints as permitted swing amplitudes, maximum velocity, etc. To resolve these problems, we suggest a novel composite antiswing crane control scheme, which involves time-suboptimal analytical trajectory planning and continuous robust tracking control. More precisely, a new analytical suboptimal trajectory planning algorithm is presented, which can generate analytical swing-free smooth trajectories guaranteeing practical constraints. Then, we design a new nonlinear control law to make the crane follow the planned trajectories with continuous control efforts, ensuring stable asymptotic tracking in the presence of perturbations/uncertainties. As far as we know, this is the first crane control scheme that simultaneously achieves state-constrained time-suboptimal trajectory planning and robust control with continuous control efforts. We implement experiments to examine its practical control performance and robustness as well.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3