Mechanical Response of a Metallic Aortic Stent—Part I: Pressure-Diameter Relationship

Author:

Wang R.1,Ravi-Chandar K.1

Affiliation:

1. Center for Mechanics of Solids, Structures and Materials, The University of Texas at Austin, Austin, TX 78712-1085

Abstract

The mechanical response of a metallic stent is considered in this series of two papers. In Part I, the development of a test method for the characterization of the mechanical response of a metallic aortic stent subjected to internal or external pressure, and a model that captures the relationship between the pressure and diameter of the stent based on slender rod theory are described. The axial and radial deformation of a bare-metal stent were measured as the stent was subjected to loading ranging from an external pressure of about 80 mm of Hg to an internal pressure of about 160 mm of Hg. The pressure was applied using a polyethylene bag; the method of applying the pressure and measuring the strains was found to provide an accurate determination of the mechanical behavior of the stent. The stent was shown to exhibit two stiff limiting states corresponding to the fully collapsed and fully expanded diameters and an intermediate range between the two where the stiffness was an order of magnitude smaller than the typical stiffness of an aorta. A complete mathematical characterization of the pressure-diameter response of the wire stent was also developed; this model is a straightforward application of the theory of slender rods to the problem of the stent. Excellent agreement with the experimental measurements is indicated, opening the possibility for modeling of the coupled response of the stent and the vessel into which it is inserted. In Part II, we consider the effect of variations of pressure over the length of the stent that introduce changes in the diameter along the length of the stent which leads naturally to the formulation of the coupled problem of the stent within the blood vessel.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3