Data-Driven Approach for Resistivity Prediction Using Artificial Intelligence

Author:

Abdelaal Ahmed1,Ibrahim Ahmed Farid1,Elkatatny Salaheldin2

Affiliation:

1. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, P.O. Box 5049, Dhahran 31261, Saudi Arabia

Abstract

Abstract Formation resistivity is crucial for petrophysics and formation evaluation. Laboratory measurements and/or well logging can be used to provide resistivity data. Laboratory measurements are time-consuming and costly, limiting their use. Furthermore, certain log records may be missing in some segments for a variety of reasons, including instrument failure, poor hole conditions, and data loss due to storage and incomplete recording. The purpose of this study is to apply support vector machines (SVM), and functional networks (FN) to introduce intelligent models for formation resistivity prediction using other available logging parameters. The well logs include gamma ray, density, neutron, and sonic data. The predictive models were built using a data collection of roughly 4300 data points collected from vertical sections of complex reservoirs. For model training and testing, the data set was split at random in a 70:30 ratio. The predictive models were validated using a different set of data (around 1300 points) that had not been seen by the model. The models predicted the target with a good correlation coefficient (R) of around 0.93 and accepted root-mean-squared error (RMSE) of 0.3 for training and testing. The suggested methods for estimating formation resistivity from available logging parameters are shown to be reliable in this study. Resistivity prediction can fill the missing gaps in log tracks and may save money by removing resistivity logs running in all offset wells in the same field.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3